A01 Integrative analysis of functional genomics and copy number variation nominates potential therapeutic intervention targets for melanoma. Banu Eskiocak, UT Southwestern Medical Center, Dallas, TX, United States.

A02 An epigenetic strategy for inhibition of MITF function in malignant melanoma. Yariv Houvras, Weill Cornell Medical College, New York, NY, United States.

A03 Mechanism and therapeutic implications of preferential codon mutation in N-RAS-driven melanoma. Meriam Waqas, The Ohio State University, Columbus, OH, United States.

A04 Aging microenvironment modulates melanoma invasion and metastasis. Amanpreet Kaur, The Wistar Institute, Philadelphia, PA, United States.

A05 Identification of RASA1 as a novel melanoma tumor suppressor gene. Minjung Kim, Moffitt Cancer Center, Tampa, FL, United States.

A06 Integrated epigenomic profiling reveals widespread demethylation in melanoma and reveals CSF-1 Receptor as an aberrant regulator of malignant growth and invasion. Orsolya Giricz, Albert Einstein College of Medicine, Bronx, NY, United States.

A07 Specific inhibition of hTERT expression in melanoma by targeting common promoter mutations which cause quadruplex DNA instability. Donald Miller, University of Louisville, Louisville, KY, United States.

A08 CADM1 is a TWIST1 regulated suppressor of melanoma invasion. Edward Hartsough, Thomas Jefferson University, Philadelphia, PA, United States.

A09 ErbB3/ErbB2 complexes as a therapeutic target in a subset of wild-type BRAF/NRAS cutaneous melanomas. Claudia Capparelli, Thomas Jefferson University, Philadelphia, PA, United States.

A10 PIM kinases as novel therapeutic targets against advanced melanoma. Batool Shannan, Wistar Institute, Philadelphia, PA, United States.

A11 Cross-talk between klotho and wnt5A drives age-related melanoma progression. Reeti Behera, The Wistar Institute, Philadelphia, PA, United States.

A12 Histone variant H2A.Z.2 mediates proliferation and drug sensitivity of malignant melanoma. Chiara Vardabasso, Icahn School of Medicine at Mount Sinai, New York, NY, United States.

A14 Hyperactivation of RSK1 is a hallmark of metastatic nodular melanoma. Amel Salhi, New York University School of Medicine, New York, NY, United States.

A15 mGlu1 Receptors and downstream signal transduction proteins as therapeutic targets for the treatment of metastatic melanoma. Tara Gelb, Georgetown University, Washington, DC, United States.

A16 The tumor suppressor FBXW7, through NOTCH1 activation, uncovers a new therapeutic paradigm for melanoma. Iraz Aydin, Icahn School of Medicine at Mount Sinai, New York, NY, United States.

A17 Assessing the similarity and dissimilarity between primary and metastatic melanoma using gene expression data. Leping Li, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, United States.

A18 BAP1 depletion negatively affects cutaneous melanoma cell growth. Raj Kumar, MGH, Boston, MA, United States.

A19 Expression of BRAFV600E in melanocytes induces Schwannian differentiation in vivo. Jodie Pietruska, Tufts University, Boston, MA, United States.

A20 Deregulation of cell cycle and apoptotic mechanisms in UVB-irradiated p16-mutant inducible melanoma cell lines. Ishita Gupta, Sultan Qaboos University, Al Khoud, Muscat, Oman.

A21 Functional differences among melanoma cells separated according to pigment content. Clare Fedele, Peter MacCallum Cancer Centre, East Melbourne, Vic, Australia.

A22 Understanding the role of glycosylation in melanoma metastasis. Praveen Agrawal, New York University Medical Center, New York, NY, United States.

A23 Epigenetic Cis-regulatory interactions in HIF1α-activated melanocytes. Stacie Loftus, National Human Genome Research Institute, NIH, Bethesda, MD, United States.

A25 WWOX phosphorylation at Ser14 enhances melanoma docking and growth in the lung and liver in mice. Nan-Shan Chang, National Cheng Kung University, Tainan, Taiwan.

A26 Protein phosphatase 4 (PP4) as a potential therapeutic target gene for BRAF wild type melanoma. Richard Essner, UCLA/Cedars-Sinai, Los Angeles, CA, United States.

A27 Analyses of the level of liver borne growth factors, IGF-1 and HGF in metastatic and non-metastatic uveal melanoma patient serum: correlation with outcome. Chandrani Chattopadhyay, UT MD Anderson Cancer Center, Houston, TX, United States.

A29 Characterization of preclinical melanoma models to predict response to therapy. Antoneicka Harris, Mayo Clinic, Jacksonville, FL, United States.

A30 Small molecule kinase inhibitor mediated modulation of immunotherapy in melanoma. Marc Wallack, New York Medical College, Valhalla, NY, United States.

A31 Association between TERT promoter mutations and BRAF/NRAS mutations in patients with primary and metastatic melanoma tumors. David Polsky, New York University Langone Medical Center, New York, NY, United States.

A32 A role for elevated leptin, independent of obesity, in the progression of melanoma. Junna Oba, UT MD Anderson Cancer Center, Houston, TX, United States.

A33 Loss of tumor suppressors KAI1 and p27 identifies a unique subgroup of primary melanoma patients with poor survival. Yabin Cheng, University of British Columbia, Vancouver, BC, Canada.

A34 MC1R signaling reduces UV mutagenesis by ATR-mediated recruitment of XPA to photolesions. John D'Orazio, University of Kentucky, Lexington, KY, United States.

A35 Integration of melanoma genotyping in clinical care. Amel Salhi, New York University School of Medicine, New York, NY, United States.

A36 An automated next generation sequencing (NGS) workflow for hospital pathology labs. Christopher Celone, Vela Research USA, Fairfield, NJ, United States.

A37 The signet ring cell melanoma - rare morphological variant of melanoma: Case report. Sinisa Maksimovic, Public health institutuion Sveti Vracevi, Bijeljina, Bosnia And Herzegovina.